Hopf Bifurcation for a New Chaotic System
نویسنده
چکیده
In this paper, a three dimensional autonomous chaotic system is considered. The existence of Hopf bifurcation is investigated by choosing the appropriate bifurcation parameter. Furthermore, formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are derived with the help of normal form theory. Finally, a numerical example is given. Keywords—Chaotic system, Hopf bifurcation, normal form theory.
منابع مشابه
Bifurcation analysis and dynamics of a Lorenz –type dynamical system
./files/site1/files/0Abstract1.pdfIn this paper we consider a continues Lorenz – type dynamical system. Dynamical behaviors of this system such as computing equilibrium points, different bifurcation curves and computation of normal form coefficient of each bifurcation point analytically and numerically. In particular we derived sufficient conditions for existence of Hopf and Pitchfork bifurcati...
متن کاملAnti-control of Hopf bifurcation in the new chaotic system with two stable node-foci
In order to further understand a complex 3D dynamical system showing strange chaotic attractors with two stable node-foci near Hopf bifurcation point, we propose nonlinear control scheme to the system and the controlled system, depending on five parameters, can exhibit codimension one, two, and three Hopf bifurcations in a much larger parameter regain. The control strategy used keeps the equili...
متن کاملA Family of Novel Chaotic and Hyperchaotic Attractors from Delay Differential Equation
In this paper, a family of novel chaotic and hyperchaotic attractors are constructed utilizing a first-order delay differential equation (DDE). Dynamical analysis exhibits that Hopf bifurcation occurs at the non-trivial equilibrium points of the system when the time delay is properly selected. Bifurcation diagram and Lyapunov spectra further verify that the system behaves alternately in chaotic...
متن کاملNormal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کاملAnalysis and Controlling of Hopf Bifurcation for Chaotic Van Der Pol-duffing System
Analysis and controlling of bifurcation for a class of chaotic Van der PolDuffing system with multiple unknown parameters are conducted. The stability of the equilibrium of the system is studied by using Routh-Hurwitz criterion, and the critical value of Hopf bifurcation is investigated. Based on the center manifold theory and normal form reduction, the stability index of bifurcation solution i...
متن کامل